Week 13 - Monday

COMP 2400

= What did we talk about last time?
* Introduced C++

Questions?

Project 6

If you think C++ is not overly complicated, just what
is a protected abstract virtual base pure virtual
private destructor, and when was the last time you
needed one?

Tom Carqill

OOP In C++

= Let's see how objects work in C++ by looking at classically
important elements of OOP

Encapsulation
Dynamic dispatch
Polymorphism
Inheritance
Self-reference

= Information hiding

= We want to bind operations and data tightly together

= Consequently, we don't want you to touch our privates

= Encapsulationin C++ is provided by the private and
protected keywords

= Unlike Java, you mark sections as public, private, or
protected, not individual members and methods

= Hardcore OOP people think that all data should be private
and most methods should be public

Encapsulation example

class A

{

private:
int a;

public:

int getA()
{

}

void setA(int wvalue)

{

}
};

return a;

a = value;

= Allows code reuse

= |s thought of as an "is-a
relationship

= C++ allows multiple inheritance, but

you should only use it if you know
what you're doing, usually as part of
a design pattern

= Deriving a subclass usually means
creating a "refined" or "more
specific" version of a superclass

Inheritance example

class B : public A
{ //has member and methods from A

};

class C : public A
{
private: //has A stuff and more
int c;
public:
int getC(){ return c; }
void increment() { c++; }

};

= A confusing word whose underlying concept many
programmers misunderstand

= Polymorphism is when code is designed for a superclass but
can be used with a subclass

= [f AudiRS5 is a subtype of Car, then you can use an
AudiRS5 where you could use aCar

Polymorphism example

void drive(Car* c);
//defined somewhere

class AudiRSS5 : public Car
{};

Car car;

AudiRS5 audi;

drive(&audi); //okay
drive(&car); //okay

= Polymorphism can be used to extend the functionality of an
existing method using dynamic dispatch

= In dynamic dispatch, the method that is actually called is not
known until run time

Dynamic dispatch example

class A {

public: wvirtual void print()
{ cout << "A";}
};

class B : public A

{
public: void print()
{ cout << "B";}

};

Dynamic dispatch example

a.print(); // A
b.print(); // B

p = &a;

P- >pr1nt() // B

= Objects are able to refer to themselves

= This can be used to explicitly reference variables in the class

= Or, it can be used to provide the object itself as an argument
to other methods

= Self-reference in C++ is provided in part through the this
keyword

= thisis a pointer to the object you're inside of

Self reference example

class Stuff
{

private:
int things;

public:
void setThings (int things)
{
this->things = things;
}
};

Self reference example

class SelfAdder
{
public:
volid addTolList (Listé& list)
{
list.add (this) ;
}
};

C++ Madness

= In industrial-strength C++ code, the class declaration is usually
put in a header file (. h) while the class definitionis in an
implementation file (. cpp)

= Benefits:

Easy to see members and methods

Header files can be sent to clients without divulging class internals
Separate compilation (faster)

Easier to take care of circular dependencies

Dividing up code header

class Complex

{

double real;
double imaginary;

public:
Complex (double realValue =
imaginaryValue = 0);

~Complex (void) ;

double getReal() ;
double getImaginary() ;

};

O, double

Dividing up code implementation

Complex: :Complex (double realValue, double imaginaryValue)

{

real = realValue;
imaginary = imaginaryValue;

}

Complex: : ~Complex (void)

{}

double Complex: :getReal ()
{ return real; }

double Complex: :getImaginary ()
{ return imaginary; }

= In C++, you can overload operators, meaning that you can
define what + means when used with classes you design
= Thus, the following could be legal:

Hippopotamus hippo;
Sandwich club;
Vampire dracula = club + hippo;

= But, what does it mean to "add" a Hippopotamus to a
Sandwich and get a Vampire?

= Overloading operators is usually a bad idea

= You can get confusing code

= Most languages don't allow it

= [t C++ itis useful in two cases:

= To make your objects easy to input/output using iostream

= To perform mathematical operations with numerical classes (like
Complex!)

(Partial) overloading operators header

Complex& operator=(const Complex& complex) ;
Complex operator+(const Complex& complex) const;
Complex operator-(const Complex& complex) const;
Complex operator-() const;

Complex operator*(const Complex& complex) const;

(Partial) overloading operators implementation

Complex& Complex: :operator=
(const Complex& complex)

{

real = complex.real;
imaginary = complex.imaginary;

return *this;

}

= Let's finish the Complex type
= Then, we can ask the user to enter two complex numbers
= We can do the appropriate operation with them

Upcoming

= Templates
= STL

= Keep working on Project 6

= Due next Friday

	COMP 2400
	Last time
	Questions?
	Project 6
	Quotes
	OOP in C++
	Object Oriented Programming
	Encapsulation
	Encapsulation example
	Inheritance
	Inheritance example
	Polymorphism
	Polymorphism example
	Dynamic dispatch
	Dynamic dispatch example
	Dynamic dispatch example
	Self-reference
	Self reference example
	Self reference example
	C++ Madness
	Dividing up code
	Dividing up code header
	Dividing up code implementation
	Overloading operators
	Overloading operators
	(Partial) overloading operators header
	(Partial) overloading operators implementation
	Programming practice
	Upcoming
	Next time…
	Reminders

