
Week 13 - Monday

 What did we talk about last time?
 Introduced C++

If you think C++ is not overly complicated, just what
is a protected abstract virtual base pure virtual
private destructor, and when was the last time you
needed one?

Tom Cargill

 Let's see how objects work in C++ by looking at classically
important elements of OOP
 Encapsulation
 Dynamic dispatch
 Polymorphism
 Inheritance
 Self-reference

 Information hiding
 We want to bind operations and data tightly together
 Consequently, we don't want you to touch our privates
 Encapsulation in C++ is provided by the private and
protected keywords
 Unlike Java, you mark sections as public, private, or
protected, not individual members and methods

 Hardcore OOP people think that all data should be private
and most methods should be public

class A
{

private:
int a;

public:
int getA()
{

return a;
}

void setA(int value)
{

a = value;
}

};

 Allows code reuse
 Is thought of as an "is-a"

relationship
 C++ allows multiple inheritance, but

you should only use it if you know
what you're doing, usually as part of
a design pattern

 Deriving a subclass usually means
creating a "refined" or "more
specific" version of a superclass

class B : public A
{ //has member and methods from A
};

class C : public A
{
private: //has A stuff and more

int c;
public:

int getC(){ return c; }
void increment() { c++; }

};

 A confusing word whose underlying concept many
programmers misunderstand

 Polymorphism is when code is designed for a superclass but
can be used with a subclass

 If AudiRS5 is a subtype of Car, then you can use an
AudiRS5 where you could use a Car

void drive(Car* c);
//defined somewhere
…
class AudiRS5 : public Car
{};
…
Car car;
AudiRS5 audi;
drive(&audi); //okay
drive(&car); //okay

 Polymorphism can be used to extend the functionality of an
existing method using dynamic dispatch

 In dynamic dispatch, the method that is actually called is not
known until run time

class A {
public: virtual void print()
{ cout << "A";}

};

class B : public A
{
public: void print()
{ cout << "B";}

};

A a;
B b;
A* p;

a.print(); // A
b.print(); // B

p = &a;
p->print(); // A
p = &b;
p->print(); // B

 Objects are able to refer to themselves
 This can be used to explicitly reference variables in the class
 Or, it can be used to provide the object itself as an argument

to other methods
 Self-reference in C++ is provided in part through the this

keyword
 this is a pointer to the object you're inside of

class Stuff
{

private:
int things;

public:
void setThings(int things)
{

this->things = things;
}

};

class SelfAdder
{
public:
void addToList(List& list)
{
list.add(this);

}
};

 In industrial-strength C++ code, the class declaration is usually
put in a header file (.h) while the class definition is in an
implementation file (.cpp)

 Benefits:
 Easy to see members and methods
 Header files can be sent to clients without divulging class internals
 Separate compilation (faster)
 Easier to take care of circular dependencies

class Complex
{
double real;
double imaginary;

public:
Complex(double realValue = 0, double
imaginaryValue = 0);
~Complex(void);

double getReal();
double getImaginary();

};

Complex::Complex(double realValue, double imaginaryValue)
{
real = realValue;
imaginary = imaginaryValue;

}

Complex::~Complex(void)
{}

double Complex::getReal()
{ return real; }

double Complex::getImaginary()
{ return imaginary; }

 In C++, you can overload operators, meaning that you can
define what + means when used with classes you design

 Thus, the following could be legal:

Hippopotamus hippo;
Sandwich club;
Vampire dracula = club + hippo;

 But, what does it mean to "add" a Hippopotamus to a
Sandwich and get a Vampire?

 Overloading operators is usually a bad idea
 You can get confusing code
 Most languages don't allow it
 It C++ it is useful in two cases:
 To make your objects easy to input/output using iostream
 To perform mathematical operations with numerical classes (like
Complex!)

Complex& operator=(const Complex& complex);

Complex operator+(const Complex& complex) const;

Complex operator-(const Complex& complex) const;

Complex operator-() const;

Complex operator*(const Complex& complex) const;

Complex& Complex::operator=
(const Complex& complex)
{
real = complex.real;
imaginary = complex.imaginary;

return *this;
}

 Let's finish the Complex type
 Then, we can ask the user to enter two complex numbers
 We can do the appropriate operation with them

 Templates
 STL

 Keep working on Project 6
 Due next Friday

	COMP 2400
	Last time
	Questions?
	Project 6
	Quotes
	OOP in C++
	Object Oriented Programming
	Encapsulation
	Encapsulation example
	Inheritance
	Inheritance example
	Polymorphism
	Polymorphism example
	Dynamic dispatch
	Dynamic dispatch example
	Dynamic dispatch example
	Self-reference
	Self reference example
	Self reference example
	C++ Madness
	Dividing up code
	Dividing up code header
	Dividing up code implementation
	Overloading operators
	Overloading operators
	(Partial) overloading operators header
	(Partial) overloading operators implementation
	Programming practice
	Upcoming
	Next time…
	Reminders

